مطلب ارسالی ازامیرمحمد
ضمن تشکر از نظرات شما عزیزان لازم به ذکرم که در صورت استفاده از مطالب این وب ، با ذکر یک صلوات روح رفتگان شما عزیزان و همچنین روح پدر این جانب ختم کنید. (جعفر فردی)

توجـــه توجـــه

در صورتی که مطالب فایل ناقص یا به هم ریخه مشاهده شد از لینک زیر فایل فونت را دانلود کرده و در رایانه خود نصب نمایید .


دانلود ۵۰۴ فونت فارسی


دانلود فونت نستعلیق


رمز : www.sadafdownload.com

بــــازی آنلاین
class="diving2"

برنامه
opera idm
chrome yahoo
winrar firefox

دانلود فقط با یک کلیک

Source =download0098.com
ورود اعضا


جعفر فردی



به وب ما عضو شوید

آمار وب سایت:  

بازدید امروز : 115
بازدید دیروز : 9
بازدید هفته : 125
بازدید ماه : 283
بازدید کل : 45724
تعداد مطالب : 248
تعداد نظرات : 67
تعداد آنلاین : 1




تعداد مطالب سایت : 240

15 مطلب جدید آپلود شده در تاریخ 94-9-1

 

1-هرگاه چند نقطه‏ی متمایز(جدا از هم)،بر روی یک خط راست باشند تعداد پاره خط ها از فرمول زیر به دست می آید.

2 ÷ (تعداد فاصله ها × تعداد نقطه ها ) = تعداد پاره خط ها

توجه : تعداد فاصله‏ها همیشه یکی کم‏تر از تعداد نقطه‏ها است.

2-هرگاه چند نقطه‏ی متمایز،بر روی خط راست باشند، تعداد نیم خط‏ها از فرمول زیر،به دست می آید.

2 × تعداد نقطه‏ها = تعداد نیم خط‏ها

3-هرگاه چند نقطه‏ی متمایز، برروی یک نیم خط باشند،تعداد نیم خط‏ها مانند مثال زیر به دست می‏آید.

مثال: برروی یک نیم خط،هفت نقطه‏ی متمایز وجود دارد چند نیم خط،در شکل وجود دارد؟

پس (8 = 1 + 7 ) نقطه داریم یعنی 8 نیم خط خواهیم داشت.

4- هرگاه چند نقطه‏ی متمایز، برروی یک پاره خط باشند نیم خطی، درشکل وجود ندارد.

 

برش و قسمت:

وقتی می خواهیم یک قطعه یا جسمی رشته مانند را به قسمت های مساوی ویا نامساوی تقسیم کنیم همیشه تعداد قسمت‏ها یکی بیش‏تر از تعداد برش‏ها است.

مثال: یک آهنگر , میله ای به طول 12 متر را به چهار قسمت تقسیم کرد او برای این کار چند برش زده است؟

برش 3 = 1 – 4 (قسمت)

 

مجموع و اختلاف:

هرگاه مجموع دو عدد و اختلاف آن دو عدد را به ما بدهند و آن دو عدد را از ما بخواهند، از دو راه زیر به دست می‏آید.

1-اگر مجموع واختلاف را از هم کم کرده،بر2 تقسیم کنیم عدد کوچک‏تر به دست می‏آید.

2- اگر مجموع واختلاف را با هم جمع کرده،بر2 تقسیم کنیم عدد بزرگ‏تربه دست می‏آید.

تعداد یک رقم در یک مجموعه‏ی اعداد متوالی

1-از عدد1 تا 99 از همه‏ی رقم‏ها 20 تا داریم به جز رقم(صفر)،که از آن 9 تا داریم.

2-از عدد 100تا 199 از همه‏ی رقم‏ها 20تا داریم به جز رقم(یک)،که از آن 120 تا داریم.

3- از عدد 200تا 299 از همه‏ی رقم‏ها 20تا داریم به جز رقم(دو)،که از آن 120 تا داریم و ...

تعداد اعداد

در مجموعه اعداد طبیعی (از یک شروع می‏شود)تعداد اعداد یک رقمی9 تا،اعداد دو رقمی 90تا،اعداد سه رقمی 900تا،اعداد چهاررقمی 9000 تاو... می باشد.

تعیین تعداد عددهای صحیح یک مجموعه‏ی اعداد متوالی

1-اگر تعداداعداد،از عدد اولی تا عدد آخری مورد نظر باشد از فرمول زیر،استفاده می‏شود.

1 + (عدد اولی – عدد آخری) = تعداد اعداد

مثال: از عدد27 تا عدد 1027 چند عدد صحیح (عددی که کسری و اعشاری نباشد) وجود دارد؟

تعداد اعداد 1001 = 1+(27 – 1027 )

2-اگر تعداد اعداد،بین دو عدد اولی و آخری مورد نظر باشد از فرمول زیر،استفاده می‏شود.

1 – ( عدد اولی – عدد آخری) = تعداد اعداد

3- اگر تعداد اعداد زوج و یا فرد یک مجموعه‏ی اعداد متوالی مورد نظر باشد از فرمول‏های زیر استفاده می‏شود.

1+ 2÷(کوچک‏ترین عدد زوج – بزرگ‏ترین عدد زوج) = تعداد اعداد زوج

1 + 2÷(کوچک‏ترین عدد فرد – بزرگ‏ترین عدد فرد) = تعداد اعداد فرد

مثال: از عدد 45تا 158چند عدد زوج وچند عدد فرد وجود دارد؟

57= 1 + 2 ÷ (46 – 158 ) = تعداد اعداد زوج

57 = 1 + 2 ÷ ( 45 – 157 )= تعداد اعداد فرد

 

 ------------------------------------------------------------------------------------------------------------------------------------------------------------

مجموع اعداد صحیح متوالی

1-برای محاسبه‏ی مجموع اعداد صحیح متوالی،از فرمول زیر استفاده می‏شود.

2 ÷ (تعداد اعداد × مجموع عدد اولی وعدد آخری ) = مجموع اعداد صحیح متوالی

مثال: محموع اعداد صحیح از 1 تا 100 را به دست آورید؟

مجموع اعداد 5050 = 2 ÷ 100( × (100 + 1 ))

2- برای محاسبه مجموع اعداد صحیح فرد متوالی که از عدد(یک) شروع

می‏شوندویا مجموع اعداد صحیح زوج متوالی‏که‏ازعدد(دو)شروع می‏شوند

علاوه بر فرمول قبلی،می‏توانیم از فرمول های زیر استفاده کنیم.

تعداد اعداد × تعداد اعداد = مجموع اعداد صحیح فرد متوالی

(1 + تعداد اعداد) × تعداد اعداد = مجموع اعداد صحیح زوج متوالی

مثال: مجموع اعداد صحیح زوج و مجموع اعداد صحیح فرد متوالی از 1 تا100 را به دست آورید؟

از 1 تا 100 ، 50تا فرد و 50 تا زوج هستند.

2500 = 50 × 50 = تعداد اعداد صحیح فرد متوالی

2550 = 51 × 50 = تعداد اعداد صحیح زوج متوالی

 

عدد وسطی

هرگاه مجموع چند عدد صحیح متوالی (با فاصله های یکسان) را بدهند و آن اعداد را بخواهند ،مجموع آن اعداد را بر تعدادشان تقسیم کرده،عدد وسطی به دست می‏آید.

1- اگر تعداد اعدادفرد باشد مانندمثال زیر عمل،می کنیم.

مثال: مجموع 5 عدد صحیح متوالی 75 می‏باشدکوچک‏ترین عدد را به دست آورید؟

عدد وسطی 15 = 5 ÷ 75

75 = 17 + 16 + 15 + 14 + 13

2- اگر تعداد اعداد زوج باشد مانند مثال زیر عمل می کنیم.

مثال: مجموع 6 عدد صحیح فرد متوالی 96 می باشد یزرگ ترین عدد را به دست آورید؟

عدد وسطی 16 = 6 ÷ 96

 

رقم یکان

1- هرگاه چند عدد زوج را با هم جمع کنیم رقم یکان حاصل جمع،حتماً زوج خواهد شد.

2- هرگاه چند عدد فرد را با هم جمع کنیم رقم یکان حاصل جمع،ممکن است زوج باشد یا فرد.

اگر تعداد اعداد،فرد باشد رقم یکان حاصل جمع،فرد می‏شود و بلعکس

3-هرگاه عدد زوجی را هرچند بار در خودش ضرب کنیم رقم یکان حاصل ضرب،حتماً زوج خواهد بود.

کسر بین دو کسر

برای نوشتن کسر بین دو کسر،کافی است صورت‏ها را با هم و مخرج‏ها را نیز را باهم جمع کرد به مثال زیر توجه کنید.

سه کسر بین دو کسر نوشته شده است.

 

بخش پذیری

بخش پذیری بر 11 : از سمت چپ شروع می کنیم و ارقام را یکی در میان با هم جمع می کنیم و بعد حاصل را از هم کم می‏کنیم و حاصل تفریق را بر 11 تقسیم می‏کنیم،اگر باقی مانده صفر شود بر 11 بخش پذیر است.

مثال: آیا عدد 32121456 بر 11 بخش‏پذیر است؟

 

تقسیم کسرها:

تقسیم کسر‏ها را به سه روش زیر، می توانیم انجام دهیم.

1- اگر مخرج‏ها مساوی باشند از مخرج‏ها صرف نظر کرده صورت کسر اول را بر صورت کسر دوم تقسیم می‏کنیم.

اما اگر مخرج‏ها مساوی نباشند مخرج مشترک گرفته و مخرج‏ها را مساوی می‏کنیم سپس صورت کسر اول را بر صورت کسر دوم تقسیم می‏کنیم.

2- کسر اول را نوشته، علامت تقسیم را به ضرب تبدیل کرده و سپس کسر دوم را معکوس می کنیم و عمل ضرب را انجام می دهیم.

3- دور در دور و نزدیک در نزدیک: از این روش، فقط در مواقعی که لازم باشد استفاده می کنیم.

 

نسبت و تناسب :

1- تناسب زمانی : در این نوع تناسب، زمان تغییری نمی کند.

مثال : اگر 4 پیراهن روی طناب در مدت زمان یک ساعت خشک شوند 8 پیراهن در همان شرایط در همان یک ساعت خشک می شود.

2- تناسب مستقیم : اگر قیمت یک تخم مرغ 100 تومان باشد 5 تخم مرغ 500 تومان می شود یعنی با افزایش تعداد تخم مرغ ها، قیمت خرید تخم مرغ ها نیز به همان نسبت افزایش می یابد.

3- تناسب معکوس : گاهی اوقات کمیت ها با هم نسبت عکس دارند یعنی هرچه یکی را زیاد کنیم به همان نسبت ، دیگری هم کم می شود. در این حالت می گوییم تناسب معکوس است. مثلاً اگر2 کارگر، کاری را در مدّت 6 روز انجام می دهند ،4 کارگر، همان کار را در مدت 3 روز انجام می دهند.

زاویه‏ی بین دو عقربه‏ی ساعت شمار و دقیقه شمار:

برای محاسیه زاویه‏ی بین دو عقربه‏ی ساعت شمار و دقیقه شمار ، مقدار ساعت را در عدد 30 ضرب کرده، مقدار دقیقه را در عدد5/5 ضرب کرده، عدد کوچک تر را از عدد بزرگ تر کم می کنیم. در صورتی که جواب به دست آمده از 180 درجه بیش‏تر باشد آن را از 360 کم می کنیم.

مثال: زاویه ای که دو عقربه ی ساعت شمار و دقیقه شمار در ساعت 1:50 می سازند چند درجه است؟

 

زاویه‏ی بین دو عقربه

مجموع زوایای داخلی چند ضلعی ها:

برای این که مجموع زاویه های داخلی هر چند ضلعی رامحاسبه کنیم ، تعداد ضلع ها را منهای 2 نموده ، در 180 ضرب می کنیم.

180 × (2 – تعداد ضلع ها ) = مجموع زاویه های داخلی

مثال : مجموع زاویه های داخلی یک 5 ضلعی را به دست آورید؟

درجه 540 = 180× (2 – 5 ) : پنج ضلعی

تعداد قطرهای چندضلعی ها:

از تعداد ضلع ها، 3 تا کم کرده، جواب را در تعداد ضلع ها ضرب کرده و سپس جواب را بر 2 تقسیم می کنیم.

2÷ تعداد ضلع ها × ( 3 - تعداد ضلع ها ) = تعداد قطرها

از هر راس چند ضلعی به اندازه‏ی (3- تعدا ضلع ها ) قطر می گذرد. مثلا از یک راس چهار ضلعی ( 1= 3 – 4) یک قطر می گذرد.

مثال : یک شش ضلعی چند قطر دارد؟

تعداد قطرها 9= 2 ÷ 6 × ( 3 – 6 )

 


نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:






,

http://www.wpclipart.com/page_frames/background_pages/page_backgrounds_4/water_drops_background.png